Integration of DNN based speech enhancement and ASR

نویسندگان

  • Ramón Fernández Astudillo
  • Maria Joana Correia
  • Isabel Trancoso
چکیده

Speech enhancement employing Deep Neural Networks (DNNs) is gaining strength as a data-driven alternative to classical Minimum Mean Square Error (MMSE) enhancement approaches. In the past, Observation Uncertainty approaches to integrate MMSE speech enhancement with Automatic Speech Recognition (ASR) have yielded good results as a lightweight alternative for robust ASR. In this paper we thus explore the integration of DNN-based speech enhancement with ASR by employing Observation Uncertainty techniques. For this purpose, we explore various techniques and approximations that allow propagating the uncertainty of inference of the DNN into feature domain. This uncertainty can then be used to dynamically compensate the ASR model utilizing techniques like uncertainty decoding. We test the proposed techniques on the AURORA4 corpus and show that notable improvements can be attained over the already effective DNN enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Decoding with Adaptive Sampling for Noise Robust DNN-Based Acoustic Modeling

Although deep neural network (DNN) based acoustic models have obtained remarkable results, the automatic speech recognition (ASR) performance still remains low in noise and reverberant conditions. To address this issue, a speech enhancement front-end is often used before recognition to reduce noise. However, the front-end cannot fully suppress noise and often introduces artifacts that are limit...

متن کامل

Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features

Speech enhancement is an important front-end technique to improve automatic speech recognition (ASR) in noisy environments. However, the wrong noise suppression of speech enhancement often causes additional distortions in speech signals, which degrades the ASR performance. To compensate the distortions, ASR needs to consider the uncertainty of enhanced features, which can be achieved by using t...

متن کامل

Is speech enhancement pre-processing still relevant when using deep neural networks for acoustic modeling?

Using deep neural networks (DNNs) for automatic speech recognition (ASR) has recently attracted much attention due to the large performance improvement they provide for a variety of tasks. DNNs are known to be robust to overfitting and to be able to remove speaker variability. Another important cause of variability in speech is the presence of noise. A lot of research has been undertaken on noi...

متن کامل

Linear Prediction-based Dereverberation with Advanced Speech Enhancement and Recognition Technologies for the Reverb Challenge

This paper describes systems for the enhancement and recognition of distant speech recorded in reverberant rooms. Our speech enhancement (SE) system handles reverberation with blind deconvolution using linear filtering estimated by exploiting the temporal correlation of observed reverberant speech signals. Additional noise reduction is then performed using an MVDR beamformer and advanced model-...

متن کامل

Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation

This paper investigates deep neural networks (DNN) based on nonlinear feature mapping and statistical linear feature adaptation approaches for reducing reverberation in speech signals. In the nonlinear feature mapping approach, DNN is trained from parallel clean/distorted speech corpus to map reverberant and noisy speech coefficients (such as log magnitude spectrum) to the underlying clean spee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015